منابع مشابه
Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1
We report the complete genomic sequence of Magnetospirillum gryphiswaldense MSR-1 (DSM 6361), a type strain of the genus Magnetospirillum belonging to the Alphaproteobacteria. Compared to the reported draft sequence, extensive rearrangements and differences were found, indicating high genomic flexibility and "domestication" by accelerated evolution of the strain upon repeated passaging.
متن کاملEffect of Magnetospirillum gryphiswaldense on serum iron levels in mice
BACKGROUND AND OBJECTIVES The Magnetotactic bacterium Magnetospirillumgryphiswaldense (MSR-1) mineralizes the magnetite (Fe(3) O(4)) crystals and organizes a highly ordered intracellular structure, called the magnetosome. Iron transport system supports the biogenesis of magnetite. Although iron is an essential trace element for many metabolic pathways of the body, increase or decrease in iron w...
متن کاملIdentification of promoters for efficient gene expression in Magnetospirillum gryphiswaldense.
To develop an expression system for the magnetotactic bacterium Magnetospirillum gryphiswaldense, we compared gene expression from the widely used Escherichia coli P(lac) promoter with that from known and predicted genuine M. gryphiswaldense promoters. With the use of green fluorescent protein as a reporter, the highest expression level was observed with the magnetosomal P(mamDC) promoter. We d...
متن کاملTranscriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense.
Genes involved in magnetite biomineralization are clustered within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Their transcriptional organization and regulation were studied by several approaches. Cotranscription of genes within the mamAB, mamDC, and mms clusters was demonstrated by reverse transcription-PCR (RT-PCR) of intergenic regions, indicating the presence of long...
متن کاملMagnetic Nanoparticles from Magnetospirillum gryphiswaldense Increase the Efficacy of Thermotherapy in a Model of Colon Carcinoma
Magnetic nanoparticles (MNPs) are capable of generate heating power under the influence of alternating magnetic fields (AMF); this behaviour recently opened new scenarios for advanced biomedical applications, mainly as new promising tumor therapies. In this paper we have tested magnetic nanoparticles called magnetosomes (MNs): a class of MNPs naturally produced by magnetotactic bacteria. We ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in Microbiology
سال: 2020
ISSN: 0966-842X
DOI: 10.1016/j.tim.2020.06.001